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Abstract—Recently, crowd counting draws much attention on
account of its significant meaning in congestion control, public
safety, and ecological surveys. Although the performance is
improved dramatically due to the development of deep learning,
the scales of these networks also become larger and more
complex. Moreover, a large model also entails more time to train
for better performance. To tackle these problems, this paper
firstly constructs a lightweight model, which is composed of
an image feature encoder and a simple but effective decoder
named Pixel Shuffle Decoder (PSD). PSD ends with a pixel
shuffle operator, which can display more density information
without increasing the number of convolutional layers. Secondly,
a Density-aware Curriculum Learning (DCL) training strategy
is designed to fully tap the potential of crowd counting models.
DCL gives each predicted pixel a weight to determine its
predicting difficulty and provides guidance on obtaining better
generalization. Experimental results exhibit that PSD can achieve
outstanding performance on most mainstream datasets while
trained under the DCL training framework. Besides, we also
conduct some experiments about adopting DCL on existing
typical crowd counters, and results show that they all obtain
new better performance than before, which further validates the
effectiveness of our method.

Index Terms—crowd counting, curriculum learning, neural
network

I. INTRODUCTION

W ITH the development of urbanization, congested crowd
scenes continually appear in squares, streets, cultural

attractions, etc. Accompanying problems of public safety also
become a new important subject. In this field, one of the
typical research orientations is crowd counting, which devotes
to monitoring the number of people in particular scenarios,
since it may be out of control easily as it exceeds a certain
threshold, and evacuation would also be a severe problem
when an unusual event occurs. This kind of consciousness
also dramatically promotes the development of crowd event
detection [1], crowd behavior analysis [2]–[5]. Beyond the
applications in public safety, the technology exploited in crowd
counting also accelerates the development of other fields like
space planning [6], [7], traffic monitoring [8], [9], scene
understanding [10], and ecological surveys [11].

To estimate the number of people in a scenario accurately,
typical traditional computer vision algorithms [12]–[17] try to
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Fig. 1. Common Crowd Counting Framework. The crowd images is first
inputted into a CNN-based encoder, generating feature maps. And the final
density maps is obtained by decoding the feature maps.

detect each object in images, but it does not perform well in
extremely congesting scenes. Other ideas [18], [19] directly
regress the count according to the extracted hand-crafted
features, but these methods only work in some specific simple
scenarios. Nowadays, a new fashionable scheme is estimating
the density map of the corresponding crowd image, and the
number is obtained by calculating integral over it. Through
combining this scheme with convolutional neural networks
(CNNs), considerable progress has been made in this field.
Most proposed CNN-based models follow an encoder-decoder
structure, as shown in Fig. 1. Firstly, crowd images are inputted
into image feature encoder to produce a set of feature maps,
and then these feature maps are inputted into the decoder to
regress the final density map. A typical encoder is MCNN [20],
which extracts crowd features through three neural branches
with different receptive fields, trying to capture various density
distributions. Aside from MCNN, VGG [21], ResNet [22] and
DenseNet [23] which play roles in image classification are also
employed in this field as encoder [24]–[26]. As for decoder,
MCNN [20] uses a simple 1×1 convolutional kernel to decode
density map, CSRNet [24] adopts several dilated convolutional
layers as decoder, and a special decoding structure is employed
in SFCN [25] for capturing perspective information.

Although these models and their variations achieve varying
degrees of success, there is still much big promotion space in
crowd counting. Firstly, the scales of models become larger
and more complex, to ensure sufficient semantic information
is extracted from the image and to display crowd density
knowledge as much as possible. Secondly, a model with
a large number of parameters entails plenty of time to be
trained, and it also results in overfitting easily and performs
low generalization. Aiming at these problems hereinbefore,
this paper focuses on how to design a lightweight model,
accelerate the training process and improve the generalization
performance of models.

To establish a lightweight model, a simple but effective
crowd-density decoder named Pixel Shuffle Decoder (PSD)
is proposed here. PSD adopts a learning-based super-pixel
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technology to decode feature maps and generates a density
map with the same size as its corresponding crowd image.
Its effectiveness is based on the following factor: standard
encoders usually adopt pooling layers to make itself more
robust, but these operations lead the predicted density map
to be smaller than the original input in scale. This indicates
that the produced map carries insufficient density knowledge.
However, PSD is able to provide a map with more density
information and does not add new convolutional layers.

To fill the gap of poor generalization and reduce training
time, this paper designs a density-aware curriculum learning
(DCL) strategy for crowd counting inspired by curriculum
learning (CL). In previous research, CL is often adopted at
the sample level, in which each training sample is given
an index number as its learning difficulty for a machine
learning model, and then the model is trained from simple
to difficult. Bengio et al. [27] have proved that this strategy
has the ability to guide the parameters in the learner to a
better region in parameter space, which makes it gain further
generalization. However, traditional curriculum learning at the
sample level is not appropriate for crowd counting. On the
one hand, the standard of the curriculum in this task is hard
to design. Suppose we define the number of pedestrians in
one image as the difficulty, splitting a large crowd image
into two small images would reduce its difficulty by half,
even if they have similar density distributions. On the other
hand, the primary issue of crowd counting is the uneven
density distribution of the crowd inside an image. It means
we should concentrate on the intra-image density distribution,
but not inter-image density distribution. Considering these
factors, DCL is not a sample-level but a pixel-level curriculum
learning method. Trivially, it uses local density as the standard
of curriculum to produce local attention for an input crowd
image, and gradually dampens this restriction in the training
process until vanishing. It is able to accelerate convergence
and enhance the accuracy of crowd counters without changing
their structures. Experimental results exhibit that DCL indeed
works and promotes the performance of crowd counters.

In a nutshell, the contributions of this paper lie in the
following aspects:

1) A lightweight decoder PSD for crowd counting is pro-
posed. The scale of it is small, but it can produce more
elaborate density maps.

2) A pixel-level curriculum learning for crowd counting
named DCL is introduced. It can improve the generaliza-
tion of crowd counters without changing their network
structures. Besides, this is the first work of pixel-level
curriculum learning to our best knowledge.

3) Experimental results show that the proposed PSD and
DCL achieves outstanding results compared with other
mainstream algorithms in crowd counting. Moreover,
while DCL is adopted to another crowd counters, they
also perform better than before. These experiments
demonstrate that our methods indeed work positively in
this field.

The rest of this paper is organized as follows. Section II
reviews some related works on crowd counting and curricu-

lum learning. Section III illustrates the details of PSD and
DCL. Several experiments are conducted, and their results is
displayed and discussed in Section IV. Finally in Section V,
our work is summarized.

II. RELATED WORKS

In this section, we review some related works about crowd
counting and curriculum learning.

A. Crowd Counting

With the development of neural networks, especially con-
volutional neural networks(CNNs), CNN-based models [20],
[24], [28]–[43] continue to refresh the record and accuracy in
crowd counting.

Crowdnet [30], MCNN [20], and AMDCN [38] attempt
to apply multi-column networks for scale variety. Boomi-
nathan et al. [30] combines two full convolutional networks
(FCNs) with different numbers of layers. MCNN [20] consists
of three FCNs with different kernel sizes, which leads to dif-
ferent receptive fields. Furthermore, the model in [38] has four
FCNs, but they replace the combination of convolutional and
pooling layers with dilated convolution layers, which makes
it possible that the inputs and corresponding outputs have
the same size. Switch-CNN [31] and the network proposed
by Sindagi et al. [35] incorporate density level classification
and density map estimation, which could be seen as a multi-
task framework. Addressing scale variety, CP-CNN [32] and
SAAN [33] use two networks to extract global and local
context to improve the efficiency of the basal multi-column
network. The model introduced by Liu et al. [29], Deepak et
al. [37] and ADCrowdNet [40] introduce attention scheme
into deep crowd counters. The former two input feature maps
extracted from the middle layer of density map estimator
to another new network to generate attention features; but
Liu et al. [40] separate attention map generalization from
density map estimation, in which way the model size is
larger than the former two, but it achieves better performance.
Li et al. [24] discover that a deeper network works better than
multi-column fashion networks, so they put a series of dilated
convolution layers on the top of a typical deeper network,
which achieves promising results in existing crowd counting
datasets. Liu et al. [44] combine head detection and density
map estimation, and a quality network is designed to reconcile
these features. MSCNN [34], SCNet [28], and SANet [36]
use multi-scale network blocks to solve the scale problem.
Yang et al. [39] and Zhou et al. [45] apply a multi-scale
generative adversarial network to estimate high-quality crowd
density maps, which infers counts more accurately.

There is no doubt that these excellent works brought a vast
development space for crowd counting. However, either these
networks are too small to extract useful crowd features, or
are too large to be trained adequately. So in this paper, we
develop a powerful decoder module that takes both accuracy
and lightweight into account. The details can be found in
Section. III-A.
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Fig. 2. DCL algorithm flow diagram. (a) is the process flow of any density map estimation model; (b) is the algorithm of how to define a density-aware
curriculum for crowd counting task; (c) describes how to embed curriculum information into standard density map estimation neural networks, and change
the training scheme of models.

B. Curriculum Learning
Curriculum learning(CL) is a learning strategy formalized

by Bengio et al. [27]. As we all know, humans could learn
better while the learning objects are not presented randomly
but sorted by a meaningful order. Imitating this pattern, CL
firstly give every training sample an index on behalf of its
difficulty, and then train models from simple samples to hard
samples.

[46]–[48] apply CL strategy on weakly-supervised object
detection; Lotfian et al. [49] use it to maximize the efficiency
of DNN in emotion recognition; Wang et al. [50] propose
a dynamic curriculum framework, which is an adaptively
sampling strategy addressing imbalanced training data. Vud-
dagiri et al. [51] introduce CL into language identification
to effectively promote the generation of models and reduce
environmental noise. Sarafianos et al. [52] apply CL to a visual
attribute classification framework, which significantly boosts
the performance. Saputra et al. [53] present a novel geometry-
aware objective function as the curriculum, to train a cascade
optical network for estimating monocular visual odometry.
Surendranath and Jayagopi [54] create a multilevel dataset
with decreasing complexity, resulting in reducing test loss
significantly compared with the non-curriculum training strat-
egy. Dong et al. [55] formulate a novel multi-task curriculum
transfer deep learning method and achieve a notable advantage
in recognizing detailed clothing characteristics. Gui et al. [56]
adopt CL to improve the generalization of models in machine
understanding and facial expression recognition.

The successes mentioned above prove that curriculum learn-
ing training strategy indeed has a positive impact on the
generation and performance of machine learning models.
Nevertheless, all of them are applied on the sample level,
which assigns weight to training samples. For pixel-to-pixel
tasks, there should be a more delicate CL method that can
assign a weight to each pixel. In this paper, a pixel-level CL
algorithm is designed for crowd density estimation. Several
experiments are conducted to verify the advancement of our
method.

III. OUR APPROACH

This section is going to describe the proposed lightweight
network and density-aware curriculum learning (DCL) in
detail. As shown in Figure 2, the entire framework can be
divided into three parts.

Part (a) deploys the proposed neural network, named
Pixel Shuffle Crowd Counter (PSCC), in which the pro-
posed decoder Pixel Shuffle Decoder (PSD) is employed
to decode density map. Actually, in the framework of
DCL, the crowd counter could be replaced by any crowd
counting models, as long as it generates a density map
corresponding with the input crowd image.
Part (b) is the central part of DCL framework. In short,
its work is producing an attention map based on the
ground truth. It provides two optional ways, whose details
are introduced in III-B.
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Part (c) employs the density map predicted by part (a)
and the attention map generated by part (b) to produce
final loss value, and use backpropagation to update the pa-
rameters in the trained crowd counting model in part (a).

At the end of this section, the algorithm is summarized, and
the whole DCL training strategy is teased out.

A. Pixel Shuffle Crowd Counter

The structure of PSCC takes an encoder-decoder pattern, as
displayed in Fig. 1. For the image feature encoder, it could be
any neural network as long as it can extract ample semantic
features of the crowd from input images. MCNN [20] is the
most frequently used one in this field, and recently VGG [21]
and ResNet [22] are also popular and effective due to their
excellent performance in other computer vision tasks, and Li et
al. [24] demonstrate that a deeper network works better than
MCNN. PSCC adopts the first ten layers of VGG-16 as its
feature encoder, as shown in Fig. 3. We do not adopt MCNN or
ResNet as its backbone, since MCNN cannot extract sufficient
image features, and ResNet consumes more computational
time and memory.

After encoding, the extracted feature maps are inputted to
the decoder, whose role is to fuse them and produce the final
density map. Because the number of feature maps reaches
hundreds, but it only needs one piece to denote the final
density map. Previous algorithms establish varied decoding
structures, but these decoders themselves also become large
and complex. To construct a lightweight decoder, this paper
does not focus on designing a deeper network, but exploring
a structure for displaying density information as much as pos-
sible. Specifically, this paper proposes a lightweight decoder
named Pixel Shuffle Decoder (PSD), whose structure is shown
in Fig. 4. PSD firstly uses a Feature Compressing Module
(FCM) to extract a series of density maps, and then rearrange
them into a larger one through pixel shuffle operation [57], a
method for super-resolving low-resolution objects into high-
resolution space. Trivially, pixel shuffle is a periodic shuffling
operation. Assume it return a map Mo with one channel, height
of r × h, and width of r × w, in which case the scale of its
input tensor Mi must be h × w with r2 channels. The pixel
value at (1, x, y) in Mo is calculated by:

M (1,x,y)
o = M

(x%r·r+y%r,bx/rc,by/rc)
i . (1)

The effectiveness of PSD is based on the following: when
training a crowd counter, the ground truth usually has the same
scale with the corresponding image, but the scale of feature
maps generated by the encoder is smaller than it due to pooling
operations. Consequently, models predict a smaller density
map. In past methods, the preliminary result is enlarged to
fit the ground truth, and a plain up-sampling method is the
Nearest-neighbor interpolation. However, this crude approach
is not beneficial for a pixel-wise regression task, since it does
not express sufficient density information. However, PSD is
able to retain much more density knowledge and embed them
into the final predicted map without increasing the number of
convolutional layers in the decoder. For PSCC, there are three
max-pooling layers in the employed vgg16-based encoder,
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Fig. 3. vgg-16 based encoder. PSCC adopts vgg-16 as its image feature
encoder, it only contains its first 10 layers, and discards these layers after the
last max-pooling.
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Fig. 4. Pixel Shuffle Decoder. The crowd images is firstly inputted into a
CNN-based encoder, generating feature maps. And the final density maps is
obtained by decoding the feature maps.

which means the scale of feature maps is 1/8 of the original
crowd image. So we make FCM return a feature map with 64
(8× 8) channels for pixel shuffle operation to predict density
map on the same scale as the original crowd image.

Actually, DCL strategy can be applied to any existing
density map estimation models addressing crowd counting,
as long as these models take a crowd image as input and
output its corresponding density map. This paper also presents
some experiments through other typical models like MCNN,
CSRNet, and SFCN. Details could be found in IV-G.

B. Attention Map Generation

Density-aware curriculum learning (DCL) strategy has the
ability to prompt the performance of crowd counters without
changing their network structures. As we have described in
Section I, traditional sample level curriculum learning (CL)
do not satisfy crowd counting since crowd counting is a
pixel-level regression model. However, DCL is a pixel-level
CL strategy. Because it assigns each pair of corresponding
pixels in predicted map and ground truth a weight through an
attention map when calculating the loss value, which could be
seen as the curriculum difficulty. It is also important to note
that this attention map only works during the training phase,
like traditional curriculum learning, and it would not work
while given novel crowd images.

As shown in Fig. 2(b), in order to generate the density
map, DCL equips two operations and leverages ground truth as
input. These two operations are average pooling and Gaussian
function respectively. To be specific, it firstly generates a
region average density (RAD) map according to ground truth
through the average pooling operation, and then produces an
attention map through the Gaussian function, which gives
more weight to simple pixels. The impact of DCL becomes
slack gradually during training process. In the following part,
how DCL works is introduced in detail.
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Fig. 5. (a) illustrates the attention variation with different RAD and step. (b) demonstrates an image, its corresponding ground truth, RAD map, and difficulty
maps in different phases. Each value in ground truth is enlarged by 100, and set r = 32, µ = 0.5, α = 0.02, β = 0.15, and γ = 1

In general, a crowd image I has N labeled heads x =
{x1, · · · , xN}, in which each xi is a 2D coordinate and
represents an object location. The density map corresponding
to I is obtained by convolving a Gaussian kernel Gσ with x :

D = Gσ(x), (2)

where σ represents the spread parameter. DCL defines the
curriculum according to RAD, which can be formulated by

RADr(x, y,D) =
1

(2r + 1)2

x+r∑
x−r

x+r∑
x−r

Di,j , (3)

in which r is a super parameter representing the local region
size, and D denotes the density map obtained through Eq (2).
It is evident that RADr(x, y,D) means the average density
value of a rectangular region which takes (x, y) as the center,
with a width of 2r + 1 pixels. Eq (3) could be easily applied
through average pooling operation, with kernel size of 2r+ 1,
stride of 1 and padding value of r. In the remainder, we use
Rr(D) to represent the RAD map obtained through adopting
Eq (3) to all pixels in D.

After figuring out Rr(D), the attention map (AT ) is defined
through Gaussian function, which is formulated as:

ATµ,δ,γ(R) = γ · exp

[
− (R− µ)2

δ2

]
, (4)

in which R represents Rr(D) obtained through Equation (3),
µ is the center position of the Gaussian curve, δ is another
parameter controlling its width, and γ represents the height of
the curve’s peak. Obviously, ATµ,δ,γ(R) gives more attention
to those pixels whose RAD is close to µ. This implies that
DCL sets those pixels whose value is close to µ as the simplest
sample points in each single step of curriculum learning.

Besides the impact of µ, δ is employed as a controller,
whose job is controlling the curriculum changes during the
training phase. In this paper, it grows linearly with training
steps:

δ = α · step + β, (5)

in which α denotes growth rate, and β is its initial value.

Through Equation(3 ∼ 5), the final attention map is formu-
lated as:

ATr,µ,α,β,γ(D, step) = γ · exp

[
−
(
Rr(D)− µ
α · step + β

)2
]

(6)

To better understand the concept of Eq. (6), Fig. 5 presents
the visualization of attention value changing curves and an
example of how the attention map changes during training.
In Fig. 5, it assumes µ = 1

2Rr(D), which makes the crowd
counter focus more on these crowd spots which have enough
distinctive features, and pay less attention to extremely sparse
and dense part. In the beginning, most pixels in AT except
a few is close to 0, after certain training steps, these values
gradually increase, until all of them are close to 1(γ). This
can be considered as a process of increasing the curriculum
complexity in curriculum learning.

Some experimental results show that the model may perform
better without average pooling operation, so Fig. 2 (b) provides
alternative accesses, with or without pooling operation. Actu-
ally, it could be seen as pooling size of 1×1 in the latter case,
so this paper does not highlight the difference.

C. Loss Function

The way that DCL influences the parameters of the trained
crowd counting model is to change its loss function in dif-
ferent training phases. Trivially, while adopting DCL training
framework, the loss function is formulated as follows:

L(Θ)step =
1

2N

N∑
i=1

‖AT (Di, step)� (Xi −Di)‖22, (7)

where � represents element-wise multiplication, Θ is the
parameters of a crowd counting neural network, N is the
number of samples in the training dataset, Xi and Di denote
the i-th input image and the corresponding ground truth
respectively, and step represents training period. From Eq (6),
the following equation can be obtained:

lim
step→∞

AT (Di, step) = γ, (8)
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which means all values in AT are going to approach γ, as
shown in Fig. 5(a). And the following result is derived:

lim
step→∞

L(Θ)step =
1

2N

N∑
i=1

‖γ · (Xi −Di)‖22

=
γ

2N

N∑
i=1

‖Xi −Di‖22

. (9)

Eq (9) suggests that the DCL will degrade the loss function
to a normal one (Eq (7)) since γ is a constant.

D. Algorithm Flow

According to the above analysis, the algorithm of DCL
could be outlined in Algorithm 1:

Algorithm 1 Density-aware Curriculum Learning
Input: Training dataset D = {(I1, D1), · · · , (IN , DN )},

density map estimator F(Θ),
super parameters of DCL r, µ, α, β and γ

Output: arg minΘ

∑N
i=1(F(Θ; Ii)−Di)

2

1: define average pooling operator APr
2: define Gaussian function Gµ,γ
3: initialize the parameter of density map estimator Θ
4: initialize training step: s← 0
5: while not converged do
6: update step: s← s+ 1
7: for k ← 1 to N do
8: Rk = APr(Dk)
9: AT sk = Gµ,γ(Rk;αs+ β)

10: predicted result: Pk = F(Θ; Ik)
11: new predicted map: P sk = AT sk · Pk
12: new ground truth: Ds

k = AT sk ·Dk

13: Θ∗ = arg minΘ ‖P sk −Ds
k‖22

14: end for
15: end while
16: return Θ∗

Given training dataset D = {(Ii, Di)|0 ≤ i ≤ N} and a
crowd density estimator F(Θ), the goal is obtaining suitable
Θ to minimize the sum of (F(Θ; Ii) − Di)

2 for all data
pairs. In step 1-4, some operators are set by given super
parameters: the average pooling operator defined by r (Eq (3)),
the Gaussian function defined by µ and γ (Eq (4)), the initial
parameters Θ of crowd counter, and the training step s. Step 5
assesses whether the model F(Θ) is converged, generally it is
a loop with certain steps, and is assessed manually (300 in our
experiments). Step 7 means sampling from the training dataset
to obtain data pair (Ik, Dk), and step 8-13 is the training
process. In step 8, RAD map is obtained through Eq (3); in
step 9, attention map is obtained by Eq (6); step 10 represents
adopting F(Θ) to predict density map; in step 11-12, predicted
density map and ground truth is multiplied to attention map.
Finally in step 13, Euclidean distance between weighted
predicted map and weighted ground truth is calculated, and
Θ is updated through backpropagation.

IV. EXPERIMENTS

In this section, the experiments we have conducted about
PSCC and DCL are introduced in detail. Firstly, the exper-
imental settings and evaluation are described. Secondly, we
perform an ablation study on ShanghaiTech Part A dataset [20]
to analyze the effect of different parts of DCL and PSCC.
Thirdly, the experimental results of how the proposed methods
perform on some mainstream datasets are reported. Finally,
we apply DCL on other typical crowd counting models
(MCNN [20], CSRNet [24], and SFCN† [25]), which proves
that the proposed DCL training strategy can boost all crowd
counting models.

A. Experiment Evaluation

By following existing works, we evaluate our method with
both the absolute error (MAE) and the mean squared error
(MSE), which are formulated as follows:

MAE =
1

N

N∑
i

|Ĉi − Ci|,

MSE =

√√√√ 1

N

N∑
i

|Ĉi − Ci|2,

(10)

in which N denotes the number of samples in the test dataset,
Ĉi and Ci represent the predicted count value and the count
label of the i-th sample respectively. Besides, Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity in Image
(SSIM) [58] are applied to measure the quality of density
maps.

B. Implementation Details

As described in Eq (6), there are five super parameters
(including r, µ, α, β, and γ) to be set before training a crowd
counter. Since the crowd density and the number of images
vary from one dataset to another, these parameters are also
different. For example, a dataset with more pictures leads to
a larger α, since it may converge through fewer epochs, but
DCL could not work adequately before the δ (in Eq (5)) is
large enough. Average crowd density has an impact on r and
µ. The former determines the RAD map. It is obvious that a
larger r could dilute the RAD map, so it is not appropriate for
images with sparse crowd. The latter determines which RAD
value should be paid more attention on. In our experiments,
µ is calculated by:

µ =
1

2N

N∑
i=1

max(Rr(Di)), (11)

which means µ is half of the average peak value in each
ground truth map, and N is the number of samples in the
dataset. µ defines which pixel should own most attention,
Eq (11) signifies both the most sparse or densest region are not
appropriate choices. This is according to two factors: firstly,
RAD in sparse regions is too small, which would lead lots of
neurons to be inactivated; secondly, the dense regions suffer
from a shortage of image features, which would make DCL
bypassed.
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TABLE I
DIFFERENT SETTINGS OF DCL IN DIFFERENT DATASET.

dataset r µ α β γ

WorldExpo10 [60]
0

0.683 0.2

0.3 2
SHT A [20] 1.482 0.05
SHT B [20] 1.02 0.05

UCF-QNRF [26] 1 2.55 0.2
GCC [25] 2.1 0.3

TABLE II
RESULTS OF DIFFERENT PART ON SHANGHAITECH PART A

Methods MAE MSE
VGG + REL + NNI 72.12 115.26
VGG + FCM + NNI 68.58 112.34

VGG + FCM + PixelShuffle (PSCC) 66.82 109.35
PSCC + DCL 64.97 107.96

Finally, according to the different characteristics of different
datasets, this paper list the detailed setting in TABLE I for
future reference. For simplicity, all experiments are conducted
under C3 Framework [59], an open-source PyTorch code for
crowd counting.

C. Ablation Experiments on ShanghaiTech Part A

In this section, we exhibit some ablation experiment re-
sults for a better understanding of our proposed methods.
These experiments are conducted on the ShanghaiTech Part
A dataset, which contains 300 images for training and 182
images for testing. Most images in it are collected from the
Internet, so they vary in image size, crowd density, and even
photorealistic style. As illustrated in TABLE II, four step-wise
models are constructed to illustrate each part’s performance
improvement. All these models leverage VGG-16 as an image
feature encoder. The first one is a baseline, which takes a
Regression Layer (REL, a convolutional layer with 1 × 1
filters) and Nearest-Neighbor Interpolation (NNI) operator as
the decoder. Based on it, the second model replaces REL with
FCM, and the performance takes a big step. The third one is
our PSCC, which takes our proposed PSD as the decoder. The
last one applies DCL strategy to train PSCC, which achieves
the best of MAE (64.47) and MSE (107.96).

Fig. 6 demonstrates the visualization of some test crowd
images. The first and the second row display the original crowd
image, and corresponding density map labeled manually. The
rest four rows post the density maps predicted by the above
four step-wise models. From Fig. 6, we can see that our PSCC
produces better density maps compared with two baseline
models. At least its predicted maps do not contain plenty
of pixel blocks like the previous two rows. Although PSCC
achieves comparative results, more details are generated after
applying DCL on it, as shown in the red box. In brief,
FCM decodes more precise density maps than baseline, pixel
shuffle operation trims the blocks generated by the upsampling
module, and DCL elevates the overall performance of PSCC
from the training strategy aspect.

1) Effect of FCM: The second row in TABLE II reports
the results of VGG + FCM. Obviously, it produces smaller

TABLE III
MAE AND MSE ON SHANGHAITECH DATASET.

Method Part A Part B
MAE MSE MAE MSE

Zhang et al. [61] 181.8 277.7 32 49.8
MCNN [20] 110.2 173.2 26.4 41.3

Switch-CNN [31] 90.4 135 21.6 33.4
CSRNet [24] 68.2 115 10.6 16
PCC Net [62] 73.5 124 11 19

SCAR [63] 66.3 114.1 9.5 15.2
PACNN [64] 66.3 106.4 8.9 13.5

ASD [65] 65.6 98.0 8.5 13.7
SFCN [25] – – 9.4 14.4

TEDNet [66] 64.2 109.1 8.2 12.8
PSCC+DCL 65.0 108.0 8.1 13.3

estimation errors (MAE: 67.51, MSE: 109.06) than the pre-
vious baseline (MAE: 69.96, MSE: 113.61). On one side,
the decoder containing FCM owns more learnable parameters,
which leads the decoder to be more precise. On the other side,
it also has a deeper network structure and larger receptive
fields. Instead, the baseline only uses a regression layer with
1× 1 convolutional structure, which is too straightforward to
deconstruct and analyze these crowd image feature maps.

2) Effect of Pixel Shuffle: While replacing nearest-
neighbour interpolation with pixel shuffle operation, PSCC
achieves smaller mean absolute error (66.82). Pixel shuffle
provides two significant benefits. Firstly, it helps the crowd
counter produce a more precious density map. While upsam-
pling by NNI, each pixel is amplified as a square spot with
the same value. However, PSD predicts a particular density
value for each pixel. So PSD is able to produce a map with
more density information. Secondly, these feature maps which
are assigned weights close to zero by NRM may not be
considered for the final density map, leading to a waste of
resources. However, pixel shuffle can leverage each feature
map generated by FCM, and fully activate each filter before
pixel shuffle operation.

3) Effect of DCL: DCL is the main point that this paper
wishes to emphasize. It could guide the crowd counter toward
a better region in parameter space where the model has more
generalization ability during training. This potential advantage
pushes its limit and further diminishes the estimation errors
(MAE: 64.47, MSE: 107.96). Comparing with the model
trained without DCL, MAE, and MSE are reduced by 2.35
and 1.39. By the way, it is evident from Fig. 6 that DCL can
display better details, and these details prompt the predicted
density map closer to the ground truth.

D. Results on Mainstream Dataset

In this part, this paper compares PSCC with several ex-
isting robust algorithms addressing crowd counting, including
MCNN [20], Switch-CNN [31], CSRNet [24], SFCN [25] and
so forth. These methods are evaluated on four entirely different
datasets, ShanghaiTech dataset A/B [20], UCF-QNRF [26],
GCC [25], and WorldExpo’10 [61].

1) Results on ShanghaiTech: ShanghaiTech dataset [20] is
composed of two parts, A and B. Part A has been introduced in
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GT cnt: 1067

SSIM: 0.692
PSNR: 18.22
EST cnt: 1101.6

SSIM: 0.703
PSNR: 20.49
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PSNR: 21.98
EST cnt: 1126.0

SSIM: 0.744
PSNR: 22.28
EST cnt: 1079.4

GT cnt: 149

SSIM: 0.699
PSNR: 14.06
EST cnt: 129.1

SSIM: 0.716
PSNR: 13.15
EST cnt: 134.22

SSIM: 0.754
PSNR: 16.51
EST cnt: 122.88

SSIM: 0.774
PSNR: 19.56
EST cnt: 134.73

GT cnt: 519

SSIM: 0.507
PSNR: 12.54
EST cnt: 538.0

SSIM: 0.549
PSNR: 13.41
EST cnt: 528.2

SSIM: 0.656
PSNR: 17.89
EST cnt: 506.7
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PSNR: 18.94
EST cnt: 516.8

GT cnt: 165
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PSNR: 14.85
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PSNR: 15.63
EST cnt: 116.8

SSIM: 0.895
PSNR: 19.28
EST cnt: 120.2

SSIM: 0.899
PSNR: 21.66
EST cnt: 129.2

Fig. 6. Typical examples of step-wise models on Shanghai Tech Part A dataset. The first row shows the inputted crowd images; the second row displays
the ground-truth density maps; The other four rows demonstrate the results of VGG+REL+NNI, VGG+FCM+NNI, PSCC and PSCC + DCL. GT cnt means
the ground truth count and EST cnt denotes the estimated count.
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TABLE IV
MAE AND MSE ON UCF-QNRF DATASET.

Methods MAE MSE
Idrees et al. [67] 315 508

MCNN [20] 277 426
Switch-CNN [31] 228 445

CSRNet [24] 122 202
PCC Net [62] 148 247

CAN [68] 107 183
SCAR [63] 122 207
ASD [65] 123 200

SFCN [25] 124 203
TEDNet [66] 113 188
PSCC+DCL 108 182

TABLE V
MAE AND MSE ON WORLDEXPO’10 DATASET

Methods S1 S2 S3 S4 S5 Mean
Zhang et al. [61] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [20] 3.4 20.6 12.9 13 8.1 11.6
Switch-CNN [31] 4.4 15.7 10.0 11.0 5.9 9.4

CSRNet [24] 2.9 11.5 8.6 16.6 3.4 8.6
PCC Net [62] 1.9 18.3 10.5 13.4 3.4 9.5

CAN [68] 2.9 12 10 7.9 4.3 7.4
SCAR [63] 1.9 13.8 9.6 29.8 3.9 11.8
ASD [65] 2.5 14.2 7.1 7.4 3.8 7.1

SFCN [25] 1.8 17.5 11.1 13.5 3.0 9.4
TEDNet [66] 2.3 10.1 11.3 13.8 2.6 8
PSCC+DCL 1.8 16.2 9.2 25.0 2.8 11.0

Section IV-C. Unlike Part A, Part B is collected in urban areas
from a drone perspective, so the images in it are homogeneous.
It contains 716 images, 400 for training, and 316 for testing.
All these images have the same resolution of 768× 1024.

The MAE and MSE are reported in TABLE III. According
to it, PSCC+DCL achieves competitive results compared with
most methods on this dataset. In Part A, it estimates the
smallest error under MAE (65.0) and the third-smallest under
MSE (108.0). And in Part B, it achieves the most amazing
results (MAE of 8.1 and MSE of 13.3).

2) Results on UCF-QNRF: UCF-QNRF [26] is the most
congested crowd counting dataset. It contains 1200 images
for training and 335 for testing, and all pictures in it are
collected from the Internet. The average count is 815, which
is 1.6 times larger than ShanghaiTech A, and 6.6 times larger
than ShanghaiTech B. Besides, the number of images is nearly
twice as large as ShanghaiTech.

As shown in TABLE IV, this paper compares PSCC+DCL
with ten different methods. For MAE, our approach (MAE:
108) only performs worse than CAN (MAE: 107), but the
difference is merely 1.0. As for MSE, PSCC+DCL is the best
crowd counter ( MSE: 182) among these compared methods.

3) Results on WorldExpo’10: WorldExpo’10 is a cross-
scene dataset, and the images in it are taken from 108 different
camera perspectives in Shanghai EXPO 2010. It contains 3,980
crowd images and 199,923 labeled heads. However, it is not an
extremely congested crowd counting dataset, since the number
of heads in a single image does not exceed 253. The training
set consists of 103 scenes, and the test set is composed of
another five scenes.

TABLE VI
MAE AND MSE ON GCC DATASET

Methods random cross-camera cross-location
MAE MSE MAE MSE MAE MSE

FCN [25] 42.3 98.7 61.5 156.6 97.5 226.8
MCNN [20] 100.9 217.6 110.0 221.5 154.8 340.7

Switch-CNN [31] 115.1 18.4 115.1 244.1 142.1 324.4
CSRNet [24] 38.2 87.6 61.1 134.9 92.2 220.1
PCC Net [62] 32.0 230.9 55.2 303.6 85.7 469.1

CAN [68] 38.0 81.2 57.1 123.1 89.5 236.5
SCAR [63] 31.7 76.8 55.8 135.3 87.2 220.7
ASD [65] 37.1 81.9 58.7 141.8 86.6 213.5

SFCN [25] 36.2 81.1 56.0 129.7 89.3 216.8
PSCC+DCL 31.3 83.8 53.1 137.9 89.0 218.4

TABLE V displays the estimation error of PSCC+DCL and
some super-duper algorithms. S1-S5 represent the MAE of
these 5 test scenes, and Mean is the average value of them.
PSCC+DCL does not work better than other models, and its
mean error is only smaller than MCNN, SCAR, and [61].
However, it achieves the best result in S1 (1.8), which is the
same as SFCN, and it is the second-best model in S5 (2.76,
TEDNet: 2.6).

4) Results on GCC dataset: GCC [25] is a synthetic dataset
that is collected and labeled freely. It is also the largest
available crowd dataset. The count in it is from 0 to 12865, and
the mean count is 501, which is close to ShanghaiTech Part A
but varies more in the scale of the crowd. In [25], Wang et al.
design three types of experiments: random splitting, cross-
camera splitting, and cross-location splitting. Details could be
found in [25]. This paper does not introduce it due to the
limited space, and the experiments of adopting PSCC+DCL on
GCC are also conducted following the above three schemes.

The estimation errors are displayed in TABLE VI, and
PSCC+DCL obtains competitive results. While GCC is split
randomly, SCAR [63] estimates the smallest MSE (76.8), and
there is a big gap between it and PSCC (83.8). Nevertheless,
PSCC+DCL estimates the smallest MAE (31.3). In the cross-
camera splitting scheme, PSCC+DCL also has the top result
in MAE (53.1), though it does not achieve the best result
in MSE (137.9 versus 129.7 of SFCN). As for the cross-
location splitting, PSCC+DCL gets the third-best result in
MSE (218.4), higher than ASD and SFCN. PCC Net performs
the best on MAE, but its MSE result is always the worst.
Compared with PCC Net, our model does not show a better
MAE performance, but it produces more balance and credible
results.

5) Discussion: According to the aforementioned exper-
imental performance description, this part discusses the
strengths and weaknesses of these methods. MCNN is the
most classical one of crowd counting, even though it makes
a big push to this field, its number of parameters is not
sufficient, and its design of network structure is not mature.
Deb et al. [24] conducted some experiments and concluded
that the feature maps produced by three different columns
are similar. Although Switch-CNN puts a classifier before
sending image patches into different columns, it does not put
much training parameters on the regression part. The number
of parameters in the classifier is 110 times of density map
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TABLE VII
MAE BASED ON DIFFERENT POOLING RADIUS r

Pooling Radius (r) 0 1.0 2.0 4.0 8.0
SHHT-B 8.08 8.12 8.12 8.27 8.31

UCF-QNRF 108.45 107.74 110.48 111.57 112.13

TABLE VIII
MAE, MSE, LOSS VALUE BASED ON DIFFERENT γ

Peak Value (γ) 0.5 1.0 2.0 4.0 8.0
MAE 14.66 9.86 8.08 8.13 8.29
MSE 25.89 16.07 13.25 13.66 13.64
Loss 0.0060 0.0050 0.0048 0.0049 0.0050

estimator. So Switch-CNN obtains better results but does not
touch the key point. CSRNet and SFCN are representations
of deeper neural networks in crowd counting. They further
elevate the neural network’s performance in density estimation,
but their structures are too complex to overfit. ASD is an
interesting model, which is inspired by the switcher in Switch-
CNN, but it not only uses VGG-16 as the backbone of
switcher, but also adopt it as the feature extractor of estimator.
These models all estimate outstanding results. However, they
need a larger training dataset and an appropriate training
strategy to lead them with better converge to be promoted. By
the way, there should be an upsampling algorithm devoting to
interpolation for more refined density map, due to the pooling
operation of feature extractor. For our method, PSCC adopts
PSD to decode and regress a pixel-to-pixel correspondence
crowd density map, and DCL leads the crowd counter to obtain
more stable and generalized parameters.

E. Discussion on Super Parameters

For further understanding of our algorithm, this part dis-
cusses the super parameters in Density-aware Curriculum
learning.

1) Pooling Radius: Pooling radius is the r in Eq (3),
representing the local region size. It also refers to which
way is selected in Fig. 2(b). To further clarify which way
should be used for different scenarios, here we conduct a series
of experiments with different radius on SHHT-B and UCF-
QNRF. TABLE VII demonstrates the relationship between
radius and MAE. This table shows that PSCC performs best
when r = 0 on SHHT-B, and best when r = 1 on UCF-
QNRF. Why the same model needs different pooling radius to
perform better? It is because of the different crowd density of
these two datasets. UCF-QNRF is more congest than SHHT-B,
so applying a pooling operation could dilute the local density
and make the RAD map smoother. Even the radius is 1, the
pooling area would be 9 according to Eq (3). The table also
shows there is an upper bound for exceeding congest scenes.
When the radius is over the bound, the performance of crowd
counter may become worse.

2) Peak Value: Peak value is the maximum attention in
DCL, which is γ in Eq (4) and Eq (6). Since peak value has
no intuitive relation with crowd density, we set it as 2 for all
datasets. In this part, we only conduct experiments on SHHT-
B for quick verification. As shown in TABLE VIII, PSCC
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obtains the best results while γ = 2. More remarkable, when
γ ≤ 1, the performance is worse than the original random
training strategy. This is because lower weight can not produce
ideal loss value. If the loss value is l before adopting DCL, it
would be less than l while applying a γ that is not bigger than
1, according to Eq (7). On the contrary, it is not appropriate
to give a larger γ, either. A larger γ could produce larger
loss value, which leads the model to vacillate in parameter
space. Actually, this can be solved by adjusting the learning
rate. However, set a suitable peak value (1 < γ < 4) is more
accessible than adjusting the learning rate during the training
process. Moreover, we also exhibit the loss value when PSCC
reaches the best results in TABLE VIII, verifying that an
appropriate γ can make the crowd counter converge better.

3) Controller δ: Referring to Eq (5), δ works as a controller
to control the curriculum changes during the training phase,
and it is a linear function about step with parameter α and
β. β is the initial value of controller δ, and it determines the
starting point of DCL. A very large β can degrade DCL to
normal random training strategy. As shown in Fig. 7, DCL
usually works well when β is small, and the performance is
worse with the increase of β but would not be worse than
standard training strategy. Another part of δ is α, which is the
growth rate of DCL, controlling the gross value of an attention
map. In our idea, α is related to the size of the dataset and
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TABLE IX
THE EFFICIENCY TEST OF MAINSTREAM MODELS

Network MCNN Switch-CNN CSRNet SFCN† PSCC
Size(M) 0.133 15.023 16.263 38.597 8.963

Speed(fps) 129.0 38.2 26.1 8.8 44.6
GFLOPs(G) 11.867 139.256 182.695 272.763 132.243

how many epochs the trained model can converge when given
an individual attention map for each training image pair. With
the above analysis, we conduct experiments about α on SHHT-
B and UCF-QNRF. The former has 400 images for training,
and the latter owns 1200 training images. The experimental
results are shown in Fig. 8. With certain training steps, the
crowd counter could see more samples on UCF-QNRF. So
DCL should give a larger growth rate on this one. This is
why UCF-QNRF could obtain the best result (MAE: 107.74),
but get an unsatisfactory performance on SHHT-B when α =
0.2. As for SHHT-B, the growth rate should be adjusted to
a smaller one for a smaller MAE, and the experiment shows
that while α is close to 0.05, the best result is obtained (MAE:
8.08).

F. Efficiency Analysis

PSCC positions itself as a lightweight crowd counter. To
detailedly analyze our model, we employ GLOPs as the
standard to compare PSCC with other mainstream models
(MCNN, Switch-CNN, CSRNet, and SFCN+). GLOPs is the
number of multiplications and additions while inputting an
image to a network. In our experiment, we set the size of
input as 576× 768. Not only GFLOPs, but we also compare
the test time on the same machine to verify the efficiency
of PSCC and other models. As shown in Fig. 9, PSCC can
achieve the best results with the second largest model size.
MCNN is the smallest one, but its performance is the worst
one. TABLE IX demonstrates efficiency evidence in more
detail, from which we can point out that: PSCC produces more
delicate and accurate results with a lightweight model, and less
computation.

G. Applying DCL on Typical Mainstream Networks

For further revealing that DCL training strategy could boost
the crowd counter’s performance, this section introduces some
experimental results of applying DCL on other mainstream

TABLE X
ESTIMATION ERRORS OF SOME MAINSTREAM ALGORITHMS

Methods SHHT B UCF-QNRF
MAE MSE MAE MSE

MCNN [20]
baseline 26.41 41.3 277 426

C3F 25.51 41.31 257.09 389.86
DCL 24.09 38.47 208.2 321.74

CSRNet [24]
baseline 10.6 16 – –

C3F 10.82 16.76 119.05 196.3
DCL 8.94 14.81 115.9 189.06

SFCN† [25]
baseline 8.9 14.3 114.8 192

C3F 8.55 14.12 115.7 194.6
DCL 7.55 12.96 107.1 189.1

methods. Specifically, these experiments replace the PSCC in
Fig. 2 with other crowd counters to see whether their per-
formance is elevated. These methods are MCNN [20], CSR-
Net [24] and SFCN† [25]. MCNN adopts a multi-column
neural network as the encoder and NRM as the decoder;
CSRNet deploys VGG-16 as the encoder, and some dilated
convolutional layers as decoder; SFCN† employs ResNet-
101 as the backbone and a spatial decoding structure as
the decoder. These algorithms vary in model depth, design
philosophy, and complexity, so whether they perform better
than before is proof of DCL’s effectiveness. As for dataset,
this paper also selects two representative datasets, Shang-
haiTech (SANet and UCF-QNRF, since the details of these
two datasets, have been introduced in IV-D, this section does
not duplicate here.

TABLE X demonstrates the experimental results of conduct-
ing the above algorithms on ShanghaiTech Part B and UCF-
QNRF. In the second column of TABLE X, baseline means
the results presented by the original published paper, C3F [59]
represents the results reproduced under C3-Framework, and
the row led by DCL exhibits the estimation errors after
applying DCL on its corresponding C3F vision. All these three
models estimate smaller errors on both datasets under the DCL
training strategy. To be specific, MAE and MSE of MCNN
decrease about 5.6% and 6.9% respectively on ShanghaiTech
Part B and decline more on UCF-QNRF (MAE: 19%, MSE
17.5%). Not only MCNN, but also the results of CSRNet
on ShanghaiTech Part B reduce 17.4% and 11.6%, and fall
by 2.6% and 8.3% on UCF-QNRF, respectively. SFCN† is
the deepest neural network among these three models. It is
worth mentioning that DCL prompts SFCN† to achieve state-
of-the-art performance (SHHT B: 7.55/12.96, UCF-QNRF:
107.1/189.1), which is better than PSCC+DCL proposed in
this paper.

This paper also records MAE’s changing curves during
the training phase, which is shown in Fig. 10. More to the
point, Fig. 10 presents the changing situation of MAE on the
corresponding validation set while training MCNN on UCF-
QNRF. Similarly, C3F and DCL represent different training
schemes. The vertical axis value is not the real MAE but its
logarithm, due to the high starting point of DCL. From the
figure, we can conclude that even DCL estimates huge MAE in
the beginning, it drops rapidly and is comparable with C3F in
about 30 epochs. After that, it is evident that DCL has guided
MCNN to a region where it can obtain better adaptability in
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Fig. 10. MAE, MSE and Loss Changing Curve. These three figures demonstrate the changing situation of MCNN on QNRF during training phase.

the parameter space. So the curve on behalf of DCL is always
under the curve of C3F, which also confirms the effect of DCL.

This section introduces experimental results while training
another crowd counter under DCL strategy. Better perfor-
mances prove that DCL could be adopted to any algorithms
addressing this field.

V. CONCLUSION

In this paper, we design a training strategy imitating Cur-
riculum Learning (CL) for crowd counting named Density-
aware Curriculum Learning (DCL). It is not applied at the sam-
ple level like traditional CL, but at the pixel level for regression
tasks. During the training process, DCL leverages ground
truth to generate an attention map, giving more attention to
these simple pixels defined by the density-aware curriculum.
Besides, we propose a Pixel Shuffle Crowd Counter (PSCC)
to verify and explore the availability of DCL. PSCC adopts
VGG-16 as the encoder, and a lightweight decoder named
Pixel Shuffle Decoder (PSD), which can express more density
information without increasing the number of layers. Ulti-
mately, it achieves competitive results in majority mainstream
datasets while cooperating with DCL strategy. By the way, we
also apply DCL on another fashion crowd counting models,
and related experiments show that DCL can improve the
performance of any crowd counter.

However, the setting of super parameters is not easy to de-
termine. In the future, we will explore a better and reasonable
way of determining their values, which can further reduce the
difficulty of applying DCL, and enhance models getting higher
generalization performance.
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